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ESTIMATION OF THE OPERATING CHARACTERISTICS WHEN THE TEST

INFORMATION OF THE OLD TEST IS NOT CONSTANT I: RATIONALE

ABSTRACT

Many combinations of a method and an approach for

estimating the operating characteristics of the graded item

responses, without assuming any mathematical forms, have been V

produced. In these methods, we need a set of items whose

characteristics are known, or Old Test, which has a large,

constant amount of test information throughout the interval of

latent trait of our interest. In the present paper, the rationale

is presented to generalize these methods so that they are made

applicable when the test information of the Old Test is not

constant. Both the transformation-free character of the maximum

likelihood estimator and the method of moments for fitting a

polynomial as the least squares solution play important roles

in this rationale.
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I Introduction

There have been produced many combinations of a method and an

approach for estimating the operating characteristics of graded

item responses (Samejima, 1972), which have two distinguishing

characteristics such that:

(1) No prior mathematical forms are assumed for the resulting

operating characteristics,

and:

(2) A relatively small number of subjects, say, several hundred, are

needed for the basic data for the estimation.

(cf. Samejima, 1977c, 1977d, 1978a, 1978b, 1978c, 1978d, 1978e, 1978f.)

We can categorize these methods and approaches as follows.

[A] Approaches:

(i) Histogram Ratio Approach

(ii) Curve Fitting Approach

(iii) Conditional P.D.F. Approach

(a) Simple Sum Procedure

(b) Weighted Sum Procedure

(c) Proportioned Sum Procedure

(iv) Bivariate P.D.F. Approach

[B] Methods:

() Two-Parameter Beta Method

(ii) Pearson System Method
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(iii) Normal Approach Method

It has been found out that all of these combinations of an approach and

a method provide us with good estimations of operating characteristics,

although each combination has its own merits as well as its relative

shortcomings when compared with the other combinations.

These combinations of a method and an approach have also such

additional characteristics that:

(3) We need a set of items whose operating characteristics are

known, in order to estimate the operating characteristics of

"unknown" items;

and

(4) Such a set of "known" items, which is called Old Test, must

provide us with a substantially large and constant amount of testL
information for the interval of latent trait of our interest.

A typical situation which possesses these characteristics in itself

is the tailored testing situation, where we have an item pool from

which an optimal subset of test items is selected and presented to a

specific examinee. When we wish to add new items to the item pool,

all we need is to use a fixed amount of test information as the

criterion for terminating the presentation of new items to every

individual subject (cf. 1977a, 1977b). Thus Old Test in this situation

is not a single set of test items, but a combination of as many

subtests as the number of examinees who provided us with the basic
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I'
data for the estimation of the operating characteristics. We notice

that, though these features, (3) and (4), are suitable in the

tailored testing situation, they will restrict the applicability of

f the estimation methods in the paper-and-pencil testing situation,

where we are forced to use a fixed set of test items.

In-some situations, efforts have been put upon the elimination

of feature (3) using equivalent items and Constant Information Model,

a new family of models, and so forth, so that we shall be able to use

the methods without depending upon the Old Test (cf. Samejima, 1979a,

1979b, 1979c). We note, however, that, even if we may have to depend

upon the Old Test in estimating the operating characteristics of "new

items," the applicability of the methods will be enhanced enormously

under any circumstances, if we can eliminate the requirement of

the constant test information, which is stated in (4), i.e., if we can

use a set of "known" items whose test information function is not

constant for the interval of ability of our interest, as Old Test.

Fortunately, this expansion of the methods is relatively easy and

straight-forward, at least, in theory.

In the present paper, the rationale behind this generalization

of the methods will be presented and discussed. In so doing, the

transformation-free character of the maximum likelihood estimator

(Samejima, 1969) takes an essential role. The method of moments

for fitting a polynomial, which proved to be also the least squares

solution (Samejima and Livingston, 1979), plays another important role.
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The procedures presented in this paper will be applied in the

simulation study in the near future, and will be published as separate

papers, in order to investigate how the theory works in practice.

J
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II Transformation of Latent Trait

Let e be the latent trait, or ability, which assumes any

real number, such that

(2.1) -0 < e <

Let g (-1,2,...,n) be an item, and x (=O,i,...,m ) be a graded item

response (Samejima, 1969, 1972), which is reduced to the binary item

response when m =1 The operating characteristic of the graded itemg

response is denoted by P (e) , which is the conditional probability
xX

with which the examinee obtains the item score, or provides us with

the graded item response, x , given ability 8 . Two typical
g

examples of this operating characteristic are those in the normal ogive

model and in the logistic model, defined on the graded response level

(Samejima, 1972). The item response information function, I (e)

is defined as the negative of the second partial derivative of the

natural logarithm of the operating characteristic, such that

2

(2.2) 1 (e) lg ae 2 Xg9

and the item information function is the regression of the item

response information function on ability e , which can be written as

m
(2.3) I (e) = 7g i (e) Ce)

xg=O g g

This item information function can be considered as an index of local
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accuracy of estimation of 6 provided by the item g , if the item

response information function assumes a positive value for every

item response xg (Samejima, 1973b), as is the case of the normal

ogive and the logistic models on the graded response level (cf.

Samejima, 1969, 1972, 1973a).

Let V be the response pattern of the graded item responses,

such that

(2.4) V = (Xl, x2, .... xn

The operating characteristic of the response pattern V , which is

the conditional probability with which the examinee obtains the

response pattern V , given 6 , and is denoted by P , can be

written, in virtue of the assumption of local independence (Lord and

Novick, 1968), by the formula

(2.5) P v(e) = 1 (0) ,
XgEV g

and the response pattern information function, (8) , is the negative

of the second partial derivative of the natural logarithm of the

operating characteristic of the response pattern, such that

(2.6) () - log P (6)ae2  V

Ix ()

x EV Xg -v ( E

g" -
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The test information function, I(0) , is defined as the regression

of the response pattern information function on ability 8 , such

that

(2.7) I(e) = E 1V(6) PV(6)
V

It has been shown both on the dichotomous and the graded response

levels that this test information function can be written as the

sum total of the item information functions, such that

n
(2.8) I(e) = E Ig( )

g=

(Birnbaum, 1968; Samejima, 1969). We can prove from (2.3) that the

item information function is non-negative in nature, regardless of

the values of the item response information functions. By virtue

of (2.8), therefore, the test information function, 1(0) , is also

non-negative in nature, and is used as an index of local accuracy

of estimation of ability 8 provided by the test. Note, however, that

this index is meaningless unless the item response information function

assumes a non-negative value for every item response x , since,

otherwise, the existence of the unique maximum likelihood estimate

is not assured for every possible response pattern, as is the case

in the three-parameter normal ogive and logistic models (cf. Samejima,

1969, 1972, 1973b).

Let T be a function of e , such that

,Z7



-8-

(2.9) T T(e)

which is strictly increasing in 0 . The operating characteristic, r
P* (t) , of the item response xg defined for the transformed latent
xg

trait T equals the original operating characteristic, P C)(e)Xg

which is obvious from its definition as the conditional probability.

Thus we can write

(2.10) P* (T) = P* [T(O)] = P (0)x x x
g g g

From (2.2) and (2.10), we can write for the item response information

function, I* (T) , such that
x

g

a2
(2.11) 1* (T) =  -T log P* (T)

=((e )a2
(x ) -0 F x .[ !

g t -log P x(e

From this result, we have for the item information function I*()
g

mg

(2.12) I*(T) = 1 I* (T) P* (T)
g x =0 Xg gg

-= 1(0) [dO]2,
9 dr

since

(2.13) M Px (e) " 0
x =0o g
gg



-9-

It can be seen that,with the response pattern V , we obtain

similar results, such that

(2.14) P*(T) = P*IT(e)] - Pv(0)

for the operating characteristic, P*(T) , and

(2.15) I*(T) = Lv(e) d2 _ I log Pv(O). d 2

V, [.--- -Tlo e ( d 2

for the information function, I;(T) . We can write for the test

information function I*(T) either from (2.15) or from (2.12) such

that

(2.16) I*(T) = 1(6) de2

and, since T is a strictly increasing function of 0 , we have

1/2 1/2 de(2.17) [I*(T)1 = [i(0)1 ddT

The maximum likelihood estimate, 0 , of ability 6 , which

is based upon the response pattern V , can be obtained by using the

operating characteristics PV(e) as the likelihood function. In a

similar manner, the corresponding maximum likelihood estimate, ,

can be obtained by using P*(T) as the likelihood function. By virtue

of the transformation-free character of the maximum likelihood estimator,

however, this second maximum likelihood estimate can also be obtained by

the direct transformation of e , such that

qh
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(2.18) =- -r(O)

(cf. Samejima, 1969).

Note that (2.18) has a great deal of practical importance,

especially when the transformation, T( ) , is given by a

relatively simple formula. Since in most cases there exists no

sufficient statistic for the response pattern V , the maximum

likelihood estimate, T , must be obtained through a numerical

process, using the basic function A* (T) , which is defined by
x g

(2.19) A* (T) = logP* (1)
g g

(cf. Samejima, 1969, 1972). Substituting (2.10) into (2.19),

we can write

de

(2.20) A* () = --- log Px (e)
g g

- dG
dT AX() ,

where A (8) is the basic function of the item response xx g

g dedefined with respect to e . Since the derivative, d- , is usually

of a complicated form, it is not easy to program the process so that

we shall be able to obtain the maximum likelihood estimate t as

the solution to the equation,

(2.21) E A* (T) = 0
x eV x

g g
It is much easier, therefore, to obtain the maximum likelihood 0



from the basic function, A x (0) ,and then obtain r through

the formula (2.18).

*1M
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III Latent Trait Providing a Constant Test Information for a
Specific Test

Here we assume that the test information function, 1(0)

of a specific test of our interest is not constant for the interval

[6, 0] . We attempt to transform the latent trait 6 to T , in

such a way that the resultant test information function, I*(T)

be constant for the interval, [r, T], where

(3.1) {r:r(e)

Let C2 denote this desired, constant amount of test information.

From (2.17) we can write

(3.2) C-1 [I(e)] 1 / 2 .(3.2) dt -

Now we obtain from (3.2) for the transformation of 6 to T

(3.3) 1 C f 11(o)] 1 / 2 do + d

where d is an arbitrary constant.

Thus it has been shown that, as far as the square root of test

information function is integrable, we can always transform the latent

trait 6 to another scale, T , by means of (3.3), in such a way

that the resultant test information, I*(T) , be constant. A problem

arises, however, when [1()]1/2 is not integrable, or its integral
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provides us with a highly complicated form, as is usually the case.

Perhaps the best practical solution for this problem is the use of

the method of moments.

It has been shown by Samejima and Livingston (Samejima and

Livingston, 1979) that the polynomial provided by the method of

moments to approximate any given function is also its least squares

solution, which is an appropriate characteristic for the present

purpose. It has also been demonstrated that, in fitting such a

polynomial, it is important to find an optimal interval of the

independent variable for the computation of the moments in order to

obtain a well-fitted function. If we succeed in obtaining such a

polynomial, we can write

m k
(3.4) [I()/2 A Z a e

k-0 k L

where k is the degree of the polynomial. Substituting (3.4) into

(3.3), we obtain

m
(3.5) -C C- 1 E a k (k+l)- 1 0k+ l + d

k=O

m+l * k

d k=OO
wherek-

(3.6) I{=k)-

.Ck.- 1 akl k- 1,2,...,m+l

37
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The transformation of 8 to T can be made, therefore, through a

polynomial of degree (m+l), which is quite simple.

For the purpose of illustration, we hypothesize two tests,

whose test information functions are not constant. Each of these

two tests consists of twenty-five graded test items with m = 2
g

Since they are both subsets of the thirty-five test items of Old

Test used in the previous studies, we shall call them Subtests 1 and

2, respectively. All these test items follow the normal ogive model,

whose operating characteristics are given by

(3.7> Px (> [2] -I/  fag(0-brg)
(3.7) - [ g exp[-u 2/21 du

g ag (E-bx +1)

where ag (>0) is the item discrimination parameter and bxg is

the item response difficulty parameter, which satisfies

(3.8) - -b 0 < b ... < bm < bmg+1 =

These item parameters are shown in Tables 3-1 and 3-2.

The item information function, I (e) , for each item of

Subtests 1 and 2 was obtained through (3.7), (2.2) and (2.3), and

the two test information functions, 1(0) , were obtained through

(2.8). Figures 3-1 and 3-2 present the square roots of the test

information functions thus obtained by solid curves, for Subtests

1 and 2, respectively.

J Taking e - -3.0 and 0 -f 3.0 , the moments about the
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TABLE 3-1

Item Discrimination Parameters of the Twenty-Five

Items of Each of Subtests 1 and 2

Item g a Subtest 1 Subtest 2g

1 1.8 x

2 1.9 x

3 2.0 x
4 1.5 x

5 1.6 x

6 1.4 x x
7 1.9 x x

8 1.8 x x
9 1.6 x x

10 2.0 x x

11 1.5 x x
12 1.7 x x
13 1.5 x
14 1.4 x
15 2.0 x
16 1.6 x

17 1.8 x
18 1.7 x
19 1.9 x
20 1.7 x

21 1.5 x
22 1.8 x
23 1.4 x x
24 1.9 x x
25 2.0 x x
26 1.6 x x
27 1.7 x x
28 1.4 x x
29 1.9 x x

30 1.6 x x
31 1.5 x
32 1.7 x

33 1.8 x
34 2.0 x
35 1.4 x

L" ".. m j
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TABLE 3-2

Two Item Difficulty Parameters of Each Item of

Subtests 1 and 2 r

Item g b1 b2  Subtest 1 Subtest 2

1 -4.75 -3.75 x

2 -4.50 -3.50 x

3 -4.25 -3.25 x

4 -4.00 -3.00 x

5 -3.75 -2.75 x

6 -3.50 -2.50 x x

7 -3.00 -2.00 x x

8 -3.00 -2.00 x x

9 -2.75 -1.75 x x

10 -2.50 -1.50 x x

11 -2.25 -1.25 x x

12 -2.00 -1.00 x x

13 -1.75 -0.75 x
14 -1.50 -0.50 x

15 -1.25 -0.25 x

16 -1.00 0.00 x
17 -0.75 0.25 x

18 -0.50 0.50 x
19 -0.25 0.75 x
20 0.00 1.00 x
21 0.25 1.25 x
22 0.50 1.50 x
23 0.75 1.75 x x

24 1.00 2.00 x x

25 1.25 2.25 x x

26 1.50 2.50 x x

27 1.75 2.75 x x

28 2.00 3.00 x x
29 2.25 3.25 x x

30 2.50 3.50 x x
31 2.75 3.75 x

32 3.00 4.00 x

33 3.25 4.25 x

34 3.50 4.50 x

J 35 3.75 4.75 x
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origin, ' , which are given by

rr
(3.9) - J erII( )] 1 / 2 de8 r=0,l,2,3,...m ,r

were computed for each of the two subtests, where m = 7 . Note

that the 0-th moment is the area under the curve of [I()] 1 /2

for the interval of 6 , [-3.0, 3.0] , which is adjusted to unity.

Since the midpoint of the interval, [-3.0, 3.0] , is the origin,

these moments are also the moments about the midpoint, which we

need in applying the method of moments. These moments turned out

to be: 1.00000, 0.00768, 2.73116, -0.00547, 13.83270, -0.10637,

84.67312 and -0.92245 for Subtest 1, and: 1.00000, 0.04742, 3.54786,

0.10420, 19.44401, 0.38678, 123.79663 and 1.83934 for Subtest 2.

The polynomials of degrees 3, 4, 5, 6 and 7 were obtained using the

method of moments, and these five sets of coefficients are presented

in Table 3-3 for Subtest 1, and in Table 3-4 for Subtest 2 (cf.

Samejima and Livingston, 1979). These five polynomials are shown

by dotted curves in Figures 3-1 and 3-2 for Subtests 1 and 2,

respectively.

We can see in these ten graphs of Figures 3-1 and 3-2 that,

although the polynomials fit fairly well to the square roots of the

test information functions, there still is much to be desired,

especially for extreme values of e . For this reason, the

same process was repeated for both Subtests 1 and 2, using a

different interval for the method of moments, i.e., 8 - -4.0 and



-28-

TABLE 3-3

Coefficients of the Polynomials of Degrees 3 through 7

Approximating [1(6)1/ , Which Were Obtained by the
Method of Moments Using [-3.0, 3.0] and [-4.0, 4.01

As the Interval of 8 , Respectively.

Subtest 1

Interval

[-3.0, 3.0] [-4.0, 4.0]

0 D 4.90665 4.96268

1 G 0.07842 0.00602
2 R -0.16475 -0.18690
3 3 -0.01243 0.00021

O D 4.67066 4.73399
1 G 0.07842 0.00602
2 R 0.09745 -0.04398
3 . -0.01243 0.00021
4 4 -0.03399 -0.01042

0 4.67066 4.73399
1 D 0.17323 0.05956
2 G0.09745 -0.04398
3 -0.06159 -0.01541

4 -0.03399 -0.01042

5 0.00492 0.00088

0 4.78242 4.72922
1 D 0.17323 0.05956
2 G -0.16329 -0.03771
3 R -0.06159 -0.01541
4 .0.05290 -0.01160
5 6 0.00492 0.00088
6 -0.00708 0.00005

0 4.78242 4.72922
1 D 0.26677 0.10599
2 G -0.16329 -0.03771

G -0.15513 -0.04152
R 0.05290 -0.01160

5 0.02778 0.00447

6 7 -0.00708 0.00005
7 -0.00157 -0.00014
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TABLE 3-4

Coefficients of the Polynomials of Degrees 3 through 7

Approximating [I(e)] /2 Which Were Obtained by the
Method of Moments Using 1-3.0, 3.0] and [-4.0, 4.0]

As the Interval of e , Respectively.

Subtest 2

Interval

[-3.0. 3.01 [-4.0, 4.01
0D

D 2.63641 3.02995G 0.22214 0.10837
2 0.25995 0.10841

3 -0.03114 -0.00924

0 D 2.02466 2.27454
1 G 0.22214 0.10837
2 R 0.93968 0.58054
3 . -0.03114 -0.00924
4 4 -0.08811 -0.03443

0 D 2.02466 2.27454
1 0.41951 0.24669
2 0.93968 0.58054
3 -0.13348 -0.04958
4 ' -0.08811 -0.03443

5 0.01023 0.00227
0 2.02136 2.14813

1 D 0.41951 0.24669
2 G 0.94740 0.74646
3 R -0.13348 -0.04958
4 . -0.09071 -0.06554
5 6 0.01023 0.00227
6 0.00021 0.00143

0 2.02136 2.14813
1 D 0.60587 0.37926
2 G 0.94740 0.74646
3 -0.31984 -0.12415

4 -0.09071 -0.06554

J 5 0.05579 0.01252
6 0.00021 0.00143

7 -0.00313 -0.00040
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= 4.0 . The new set of eight moments about the origin, which

were computed through (3.9), proved to be: 1.00000, 0.01082,

4.26091, 0,10885, 35.49275, 1.61607, 367.31471 and 24.05220 for

Subtest 1, and: 1.00000, 0.02913, 6.01702, 0.03999, 56.94637,

-0.09788, 633.40916 and -3.04930 for Subtest 2. The coefficients

of the resultant five polynomials are also presented in Table 3-3

for Subtest 1, and in Table 3-4 for Subtest 2. Figures 3-3 and

3-4 present the new polynomials of degree 3, 4, 5, 6 and 7 by

dotted curves, together with the square root of the test information

function, which is shown by a solid curve, for Subtests 1 and 2,

respectively. We can see a substantial improvement in the fit of

polynomials for both subtests, and, especially for Subtest 1, the

polynomial whose degree is as low as 4 "lready provides us with an

excellent fit.
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IV Basic Data for Estimating the Operating Characteristics

We must administer both Old Test, whose test information

function needs not to be constant, and the set of new items, whose

operating characteristics are to be estimated, to, say, several

hundred examinees, whom we sampled from an appropriate population,

as is the case in the previous studies, in which we used an Old

Test whose test information function is constant. Let N denote

the number of examinees. It is required that the "known" test items

of the Old Test follow a model, or models, which provides us with a

unique maximum likelihood estimate for every possible response

pattern (cf. Samejima, 1969, 1972).

Next, we must obtain the maximum likelihood estimate, e

of ability e for every individual examinee from his response

pattern V on the Old Test of n items. When there exists a

simple sufficient statistic for the response pattern, as in the

logistic model on the dichotomous response level, this process is

relatively simple and straight forward. That is to say, in the

logistic model whose item characteristic function, P (0) , or

the operating characteristic for x =1 on the dichotomous response
g

level, is given by

(4.1) P () = [1 + exp{-1.7 a (6-b )}1
g g g

where a and b are the discrimination and difficulty parameters,
g g

respectively, the maximum likelihood estimate is the solution of e
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to the equation

n
(4.2) t(V) = E a Pe) ,

g=l g g

where t(V) is a simple sufficient statistic for the response pattern

V which is given by

(4.3) t(V) = E a x
x EV g g

g

(cf. Birnbaum, 1968). When there exists no sufficient statistic for

the response pattern, as is the case in most situations, the maximum

likelihood estimate must be obtained through a more complicated

n
numerical process, using [ E m + n] basic functions (Samejima, 1969,

gl g
1972), A () , which is defined by

x

(4.4) A (e) P (6C)

' X 
9g g

for each graded item response x Thus the maximum likelihood

estimate is the solution to the equation,

(4.5) Z A (a) = 0
xVX

gV g

which can be obtained by the aid of an electronic computer using

Newton-Raphson Method.

The third step is to compute the test information function,

100), of the Old Test through (2.2), (2.3) and (2.8), and, once it has

been done, its square root, 1I(o)] /2 , must be computed.
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1/2
Then we calculate the moments of [1(6)] about the

midpoint of the interval, l8, 6] , and apply the method of moments

to obtain the polynomial which approximates [I(8)] I/2 In so

doing, it is important to adjust the endpoints of the interval, 8

and 1 , and the degree of the polynomial m , as was illustrated in

the preceding chapter, in order to obtain a good approximation.

Thus the (m+l) coefficients, a k (k=O,l,2,...,m) , in (3.4) have

been obtained for the Old Test.

After this has been done, set the desired amount of constant

test information, C2 , for the second test information function,

I*(T), which is to be used after the transformation of 6 to T

Since the normal approximation to the conditional distribution of

i, given T , plays an essential role in the estimat.on methods,

this constant amount of test information must be substai.tially large.

Next, we must obtain the coefficients a* (k=O,l,2 .... m,m+l)

in the transformation of 8 to T , which is given by (3.5). First,

determine the value of T corresponding to the origin of 0 , and

use this as d in (3.5). If we wish to keep the position of the

origin unchanged, then set d = 0 . Using these two values of C

(>0) and d thus obtained, and the coefficients ak's of the

1/2
polynomial approximating [1(6) , obtain the coefficients, a*

of the polynomial given by (3.5) from (3.6).

The final step is to obtain the maximum likelihood estimate

of the transformed latent trait T , on the Old Test, for each
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the N ,xam inees . We may do this through the 'qitat toni

6) T _ 6k
k=Ok

'. IeIL u is the maximum likelihood estimate of 0 on the Old Test

-ccri individual examinee, which was obtained earlier. This set

cr thie maximum likelihood estimates t for the total group of N

_;aminees is the basic data for each estimation process of the

1-Peating characteristics of the graded item responses, which is to

p-c sented in a later chapter.

For the purpose of illustration, Figures 4-1 and 4-2 present

re relative frequency distributions of 6 and T for the five

:,tndred hypothetical subjects, respectively, which were obtained

h Subtest 1. This subtest consists of twenty-five graded

* t items which follow the normal ogive model, with the

>s rimination and difficulty parameters shown in Tables 3-1 and

;-2, respectively, as was introduced in the preceding chapter.

."al:i.s of 0 were obtained by using the basic function defined

(4.4) for each item score x , and as the solution to the
g

.,,a.dtion (4.5). The transformation of 0 to T was made through

4.¢) with m n- 7 , in which the coefficients, a *'s , were based
k

:)n the coefficients N's obtained by the method of moments with

= -4.0 and 0 4.0 , and C = 4.5 . These coefficients,

al shown in Table 3-3. As we can see in these two figures,

'.hc triq,'icncy distribution of T turned out to be more rectangular

.w
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than that of , although they are similar in shape. To make the

difference between the two frequency distributions more visible,

five polynomials of degrees 3, 4, 5, 6 and 7 were obtained by the

method of moments to approximate each of the density functions of

6 and , and were drawn by solid lines in the five graphs of

each of Figures 4-1 and 4-2, along with the corresponding frequency

distribution. We note that, except for the polynomial of degree 3

in each figure, the four approximated density functions are very

similar to one another, and they are closer to a rectangle for

than those for 6 . Since the method of moments was applied for

a set of observations, instead of some empirical function, the 0-th

through seventh moments about the origin were computed directly

from the observations, and they turned out to be 1.00000, -0.00472,

2.19052, -0.04378, 9.17620, -0.52428, 48.47210 and -4.96487 for

, and 1.00000, 0.00479, 2.12231, -0.02483, 8.51515, -0.35195,

42.31180 and -2.77758 for t The interval of 6 used for the

method of moments is f-2.9843, 2.9904] and that of is [-3.0479,

2.8681]. The coefficients of these ten polynomials are presented

in Table 4-1.

Figures 4-3 and 4-4 present corresponding frequency

distributions and the polynomials of degrees 3, 4, 5, 6 and 7

obtained through Subtest 2, respectively. This subtest also consists

of twenty-five graded test items following the normal ogive model,

but ten of the items are different from those which are used in
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TABLE 4-1

Coefficients of the Two Sets of Polynomials of Degrees 3
Through 7, Which Were Obtained by the Method of Moments

to Approximate the Density Functions of e and :.
Respectively. The Maximum Likelihood Estimation Is

Based on Subtest 1.

Coefficient Coefficient
for for

6 T

0 D 02220.21204

1C 0.00090 -0.00092
2 R -0.01854 -0.01463
3 *-0.00023 0.00016

O D 0.19916 0.18470
1 G 0.00074 -0.00198
2 R 0.00765 0.01688
3 .- 0.00019 0.00044
4 4 -0.00342 -0.00424

O 0.19918 0.18487
1 D-0.00609 -0.01220
2R 0.007610.16

30.00339 0.00594
4 .- 0.00342 -0.00419
55 -0.00036 -0.00057

0 0.18920 0.18183
1 D -0.00623 -0.01244
2 G 0.03108 0.02397
3 R 0.00348 0.00611
4 .- 0.01131 -0.00674
5 6 -0.00037 -0.00059
6 0.00065 0.00022

0 0.18922 0.18198
1 -0.01305 -0.02135
2 D 0.03102 0.02351

3C 0.01036 0.01535
4R -0.01128 -0.00654

5 , -0.00207 -0.00294
6 70.00065 0.00020
7 0.00012 0.00017
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Subtest 1, as is shown in Tables 3-1 and 3-2. Just as in the case

of Subtest 1, the transformation of i to t was made through (4.6)

with m = 7 , and the interval used for obtaining the coefficients

ak's in the method of moments is [-4.0, 4.0]. The coefficients

c{'s thus obtained are shown in Table 3-4. The amount of the

constant test information for T is different, however, and we

used C = 3.5 instead of C = 4.5

It is noted that the two frequency distributions of 0

which were obtained through Subtests 1 and 2, respectively, are

substantially different from each other, and so is the case with

those of . Although the latter is reasonable because of the

difference in the two transformations of 6 to , the two

frequency distributions of 6 should not be so different since

they are both the estimates of the same 6 for the same group of

five hundred examinees. If we focus our attention on the polynomials

approximating the density function of e , however, we notice that

the two sets of polynomials of degree 4 or greater are almost identical.

In each of Figures 4-3 and 4-4, the approximated polynomials

are very similar, except for the one with degree 3, as was the case

with those obtained through Subtest 1. These approximated density

functions are steeper for i than for , and the difference is

greater than in the case of Subtest 1. The 0-th through seventh

moments about the origin for 6 are 1.00000, 0.00694, 2.31594, 0.07941,

9.95147, 0.41052, 52.81177 and 2.12395, and those for t are 1.00000,
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0.06363, 1.48640, 0.41654, 5.19558, 2.54982, 24.35844 and 16.73911.

The interval of 0 used in the method of moments is 1-2.9290,

2.9625], and that of i is [-2.9315, 2.9160]. The coefficients of

these polymomials are presented in Table 4-2.

tI
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TABLE 4-2

Coefficients of the Two Sets of Polynomials of Degrees 3
Through 7, Which Were Obtained by the Method of Moments

to Approximate the Density Functions of 6 and ,
Respectively. The Maximum Likelihood Estimation Is

Based on Subtest 2.

Coefficient Coefficient
for for

0 D 0.22600 0.27318

1 G -0.00098 -0.00149
2 R -0.01935 -0.03584
3 0.00057 0.00102

3

0 D 0.19975 0.29301
1 G 0.00445 -0.00185
2 R 0.01073 -0.05903
3 . -0.00089 0.00112
4 4 -0.00404 0.00317

0 D 0.19932 0.29291
1 -0.00026 -0.01481
2 R 0.01141 -0.05887
3 0.00164 0.00819
4 -0.00415 0.00314
5 -0.00026 -0.00074

0 0.19785 0.29859
1 D 0.00039 -0.01503
2 G 0.01496 -0.07282
3 R 0.00120 0.00834
4 . -0.00538 0.00803
5 6 -0.00021 -0.00076
6 0.00010 -0.00042

0 0.19707 0.29845
1 D -0.00813 -0.03297
2 G 0.01737 -0.07238
3 0.01000 0.02724R
4 -0.00639 0.00784
5 -0.00244 -0.00563
6 0.00020 -0.00040
7 0.00016 0.00035
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V Conditional Moments of the Maximum Likelihood Estimate t and

the Three Methods of Approximating the Conditional Density *(T I)

Let A be an estimator of T , and n be the error of

estimation. We assune that the conditional distribution of T

given T , is normal, with 0 and a as the two parameters, and

X is given by the simple sum of T and n , such that

(5.1) X = T + n .

We obtain for the first four conditional moments of T about the

origin, given X

(5.2) E(TI X) A + 2 -4- log g(X)
dd

2

(5.3) E(T 2 X) A 2 2Xo 2 _Llog g() ) + 14[ d of g(X)

+ [{!L log g(X))
2] + G2

d3

(5.4) E(T3 1A) - log g(x))

and

2 d 2  d

(5.5) E(T
4
1X) a4 [ 3 + 6a - log g(A)} + 3U4{ log g(A)) 2

+ oh{d)4 log g(X)}l

where g(X) is the marginal density function of X.

By virtue of the fact that I*(T) = C 2 and that the asymptotic

conditional distribution of the maximum likelihood estimate T , given

, is the normal distribution with T and [I*(T)] - 1/ 2  as the

I-v
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parameters (Samejima, 1975), we can write for the first four conditional

moments of T about the origin, given T ,

(5.6) E(Tj ) + C-2 d log g() ,

.f -2 d -4 d2

(5.7) E(T 2 I 2 2C _--r log g(T: 4 C [-d72 log g(T)

+ {[-- log g(j)}
2 ] + C- 2

(5.8) z(=3j )  C- 6 d 3

[7- log g(T)]

(5.9) 3 d2  -4 d2  }2

3 + 6C- 2  log g(6)} + 3C - log g()'dT T

-4 d4

+ C {d- log g(r))]

where g() is the marginal density function of

The formulas (5.6) through (5.9) imply that, since the set of

N maximum likelihood estimates, i , is available as our basic data,

these conditional moments can solely be estimated from g(T) , provided

that we can approximate this marginal density function by fitting an

appropriate four-time differentiable function to the set of N -'s

This has been done in the previous studies using e instead of T

by adopting a polynomial of degree 3 or 4, which was obtained by

the method of moments.

After these conditional moments have been obtained, which are

functions of - , we can fit some appropriate function for the

conditional densitv function of T , given t . In the Normal

Approach Method, only the first two conditional moments are used,
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and the normal density function is fitted for the conditional distribution

with E(Tr;) and [E(T21j) - {E(TI?)}2]l / 2 as the parameters. For

simplicity, let pi be the first conditional moment of T about

the origin, and v12 be the second conditional moment of T about

the mean, given - , respectively. Thus the approximated conditional

density function, $(TIi) , in the Normal Approach Method is given by

(5.10) $(Tj;) = (27p2)-1/2 exp[-(- 1 2/(212)1

In the Pearson-System Method, all of the above four conditional

moments are used. For simplicity, let P3 and P4 denote the third

and fourth conditional moments of T about the mean, given T

adding to the symbols, pi and V2 " Pearson's criterion K (Elderton

and Johnson, 1969; Johnson and Kotz, 1970) is defined by

(5.11) K = 81(02+3)2[4(2a2-38I-6)(4 2-3aI)] ,-

where 81 and 82 are given by

(5.12) 21 = 2-3

and

-2
(5.13) 82 = 1142

Depending upon the value of K , one of the Pearson type distributions

is assigned as the approximation to the conditional distribution of T

given T For different values of , therefore, possibly different
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types of Pearson distributions are assigned, and we have varieties

of different types of density functions for $(Tj ) . If, for

instance, K < 0 , then the distribution assigned is the Beta

distribution, whose density function is given by the formula

(5.14) (p I]) = [B(p, ]I(t-a)P_(b- ()q-l a)-
T T T T

in which the four parameters, p , , a; , and bj , are estimated

from the four conditional moments, such that

(5.15) p , q = (r/2)[l ± (r+2){B1 161 (r+2)
2 + 16(r+l)]-l1/2

]

(5.16) 21/2 (r+2) 2 + 16(r+1)]1/2/2

(5.17) a = -

and

(5.18) +

where r is defined as

(5.19) r = 6(6 2-BI-)(6+3aI-l2B2

If K = 0 , which results from B 0 and 62 < 3, the distribution

is a special case of Beta distribution in which the density function

is symmetric, and two parameters, p and q- , are equal, such that

(5.20) pi = r12
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If K 0 ,which is resultant from = 0 and = 3, then the

normal distribution is assigned, whose density function is given

by (5.10). If K > I , then the distribution is of Pearson's Type

VI, and, if 0 < K < I , then the distribution is of Pearson's

Type IV, and so forth.

The advantage of Pearson-System Method over the other two methods

is that it makes full use of the four estimated conditional moments

of T , given r , without restricting the conditional distributions

to a single type. It has its disadvantage, however, since in some

cases the estimation of the higher conditional moments is fairly

inaccurate for some range of T , and also the estimation of the

parameters of some Pearson type distributions is difficult.

In the Two-Parameter Beta Method, the Beta distribution is

adopted for the conditional distribution of T , given T , whose

density function is given by (5.14). Two parameters, a- and b,
TT

are preassigned for each i in some appropriate method, and the

other two parameters, p and q- , are estimated by

(5.21) p 2 = M2 (l-MI)M - M
Ml 1 1)2 1I

and

(5.22) q- = MI(I-M 1 )
2M1 - (1-M1 )

where

(5.23) M I = (,'-a) ) (b=-a') -

T I
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and

(5.24) M12 = (b 2

This method has an advantage over the Normal Approach Method in the

sense that, unlike the normal density function, the Beta density

function provides us with varieties of different curves depending

upon the values of the parameters. Its disadvantage is, however,

that we have an additional work of finding an appropriate finite

interval, [a, b4]
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VI Histogram Ratio and Curve Fitting Approaches

The two approaches discussed here, as well as Conditional

P.D.F. Approach, make full use of the approximated density function,

g(i) , which is obtained on the entire set of N 's . The

conditional moments of T , given , are obtained by (5.6)

through (5.9), using this approximated density function for g(T)

We calibrate a certain number of T for each of the N ['s,

through the Monte Carlo method, in accordance with the approximated

conditional density function of T , given . This approximated

density function, $(I-) , can be a normal density function, a Beta

density function, or one of the Pearson System density functions,

depending upon which of the three methods, i.e., Normal Approach

Method, Two-Parameter Beta Method and Pearson-System Method, we

choose. Let T denote these calibrated T's , and v be the

number of - s calibrated for each -i of examinee i . Thus we

obtain (vxN) 's in total. We classify these 's into (m +1)

item score groups, where h is a new test item whose operating

characteristics are to be estimated, depending upon the item score x

(=0,1,...,mh ) the specific examinee obtained for item h . Then

each T is transformed to 0 , through

(6.1) e = -l['(6)]

When T( ) is given by the polynomial given by (3.5), for e.-ample, this

process can easily be performed by Newton-Raphson Method.
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In the Histogram Ratio Approach, these (vxN) 0O's are

categorized into intervals of small, equal widths. The rat lo of

the frequency of ' s, which belong to examinees whose item score to

item h is Xh, to the total frequency, 1n each subinterval of

provides us with the estimated operating characteristic, P (e)
xh

Let H (Wcs) denote the frequency of G's , which belong to the
h

item score group xh , for the subinterval s , whose midpoint is

. Then we can write
S

(6.2) Px (es) = Hx(Os)[ Y H. (Ocs)] -  x 0,i ..... 1h
h h j=0

In order to obtain a smooth curve for this estimated operating

characteristic, it is advisable to use a fairly large number for v

and a small width for the subinterval s of 0

In the Curve Fitting Approach, a polynomial of a certain degree

is fitted by the method of moments, to the subset of 0's for each

item score grJup xh . Then the ratio of the resultant polynomial

to the sum of (mh+l) such polynomials is taken, and this ratio

provides us with the estimated operating characteristic of the

item response xh ' Let rXh () be such a polynomial for the item

score group xh . We obtain for the estimated operating characteristic,

P (0) , such that

xh

(b.3) P (6) = X (O)[ Z '(0 -l) x hh h j,= ,...

i'
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VII Conditional P.D.F. Approach

In this approach, we specify the exact function of the

approximated conditional density, ;('rlT) , using the parameters

estimated from the approximated density function g(;) , (cf. Chapter 5).

Again, this approximation to the conditional density function, $(tIt)

can be a normal density function, a Beta density function, or one of

the Pearson System density functions, depending upon which one of the

Normal Approach Method, the Two-Parameter Beta Method, and the Pearson-

System Method we choose.

In the Simple Sum Procedure, these specified, approximated

conditional density functions are categorized into the (mh+l) item

score groups for a new item h , whose operating characteristics are

to be estimated, depending upon the item score xh (=0,1,2,. .. ,mh)

that each examinee has obtained. By virtue &f (2.10), the

transformation of T to e is made through (6.1), and the estimated

operating characteristic, P () , is given by
xh

N

(7.1) PXh(e) = Z i (TI i)[ Z X(iTi)]h ,h i Exh  i=lh

where i denotes an individual examinee and i  is the maximum

likelihood estimate of T for the individual i

In the Weighted Sum Procedure, the estimated operating

characteristic, P () , of the item response xh can be written as

N
(7.2) P = w(i) $(QTi)[ E w(xi)$(TIill -

xh  iEXh l

.h011... IN
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where w(- i) is an appropriate weight assigned to the maximum

likelihood estimate r for the individual examinee i . Simple Sum

Procedure can be considered, therefore, as a special case of the

Weighted Sum Procedure, in which w(T.) = 1 for all the individual

examinees. Another example of such a weight, w(T.) , is the area under
1

the approximated density function, g(;) , for the interval of

which starts from the midway between Ti and the lower adjacent

T. and ends with the midway between I i and the upper adjacent

. The transformation of T to e in (7.2) can be made through1

(6.1), as in the Simple Sum Procedure.

We have a somewhat different rationale behind the Proportioned

Sum Procedure. Let p(icxh ) be the probability with which examinee

i belongs to the item score group xh . We can write for the

estimated operating characteristic, P () , of the item responsexh

Xh to a new item h

N N
(7.3) P (0) = X p(iCxh) $(Tli) [ (Tlx

h i=l i=l

xh = O",...m h

where p(icxh) is the estimate of the probability p(icx h ) , which

satisfies

xh=0 Xh=0

One example of this proportional weight, p(ix h )  is the proportion

of examinees who belong to the item score group xh within a specified
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interval of r for which Ti is the midpoint. The transformation of

T to e in (7.3) is, again, made through (6.1).

iI
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VIII Bivariate P.D.F. Approach

In contrast to the other three approaches, Bivariate P.D.F.

Approach makes use of the estimated bivariate density function, rather

than the estimated conditional density function, q(it) Let

(,T,) denote the bivariate density function of T and T We

can write

(8.1) E(+,T) = (T ) g()

We classify the set of N Ti's into (mh+l) item score

categories, depending upon the item score xh (=0,I,....mh) the

examinee i obtained for a new test item h , for which the operating

characteristics are to be estimated.

The method of moments is applied for each of these (mh+l)

subsets of T , and the density function, g x(T) , is estimated
Xh

for each subgroup. The conditional moments of T , given T ,

are also obtained for separate subgroups, using the formulas (5.6)

through (5.9). Based on these estimated conditional moments, the

parameters of a specific density function, which is adopted for 4(T>I) ,

are obtained for each subgroup xh . The choice of $(TIT) depends

upon which of the three methods, i.e., Normal Approach Method,

Two-Parameter Beta Method and Pearson-System Method, is taken. The

bivariate density function of r and T is obtained from (8.1)

for each of the (mh+l) subgroups. Let xh (T,T) denote the

estimated bivariate density function of T and T for the subgroup
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xh The estimated operating characteristic, x(P) , is given by

(8.2) P (0) = f C h( T)dT [ f r h ,)dfl -
Xh~ j=O0 h = 0i .. h

The transformation of T to e in (8.2) is again made through (6.1).

There is a somewhat different approach which also belongs to

the Bivariate P.D.F. Approach (Samejima, 1977c), which is called

Normal Approximation Method. In this method, the estimation of the

density function, g(r) , is not necessary. We approximate C (,) ,TI

bivariate density function of T and T for each item score group

, by a bivariate normal density function (e.g., Anderson, 1958),

whose parameters are estimated from our observations. The regression

of T on T is estimated by the least squares method, which provides

us with

(8.3) E(T) = [l-C- 2 {Var.( )}-1 1 + C-2 [Var.(T)1 - I E6 )

where E(T) and Var.(T) denote the expectation and the variance of

T for the subgroup Xh . The conditional variance of r , given

, is obtained by

-2[_-2 -(8.4) Var.(TIT) = C-[lC {Var.(T)} -1

The estimated operating characteristic, P (6) , can be obtainedxh

either through the Monte Carlo Calibration of t and the procedure

similar to the Histogram Ratio Approach or the Curve Fitting Approach,

or by the ratio of the integral of the bivariate density function for
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the subgroup Xhto the sum of the (%h+1) integrals of the estimated

bivariate density functions, as shown in (8.2).



-84-

IX Discussion and Conclusions

The rationale behind the methods and approaches for estimating

the operating characteristics of the graded item responses when the

test information function of the Old Test is not constant, and the

outline of their procedures, are presented. It has been shown that the

generalization of our old methods and approaches to the above situation

is relatively simple and straightforward, at least, in theory. Since

the elimination of the restriction of the constant amount of test

information will provide us with a great deal of benefit in the

applicability of the methods and approaches, especially in the paper-

and-pencil situation, this generalization of the methods and approaches

may make a great deal of contribution to researchers in psychometrics

and applied psychological measurement.

We need carefully designed simulation studies, however, before

using these methods and approaches for empirical data, and to observe

how these procedures work. It is anticipated that, for the range of

e where the test information function, 1(0) , of the Old Test assumes

low values, the estimation of the operating characteristics is less

accurate, compared with the one which is based upon the Old Test

having a constant amount of test information. It may be especially

so for both lower and higher extreme values of 0 when the test

information function is of bell shape, as it is for Subtest 1, which

was introduced in earlier chapters. Comparison of the results using

different types of test information functions, as those of Subtests 1

and 2 in the present paper, uill be meaningful.
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